GAS-FIRED HIGH AND LOW INTENSITY INFRARED HEATERS

MODEL IHR

MODEL OHP

MODEL IPT
This catalog describes the design and construction features and benefits, typical applications, dimensional data, and configurations available for the IHR and ITP Series.

Modine’s IHR Series is a gas-fired, high intensity ceramic infrared heater. Ideal for spot heating, the IHR series offers simple gas and power connections, as well as inexpensive maintenance.

Modine’s IPT Series sets the industry standard for low intensity infrared heating performance and installation versatility. The comfort and uniform heating provided by the IPT Series are second to none.

Table of Contents

- General Unit Applications .. 2
- Infrared Heating Defined ... 2
- Advantages of Infrared Heating ... 2
- Typical Applications .. 2
- Modine Breeze® AccuSpec Sizing and Selection Program 3
- Features and Benefits - Model IHR ... 4
- Features and Benefits - Model IPT .. 5
- Performance and Dimensional Data - Model IHR 7-8
- Performance and Dimensional Data - Model OHP 9
- Performance, Utilities, and Clearance - Model IPT 10
- Dimensional Data - Model IPT .. 11
- Specifications and Model Nomenclature - Model IHR 12
- Specifications and Model Nomenclature - Model IPT 13

Infrared Heating Defined

Infrared heating systems rely upon the transfer of radiant energy from hot heat exchanger surfaces (up to 1850°F for high intensity heaters) through the air to cooler surfaces, without the use of an air mover. Since radiant energy always travels in a straight line from its source, people and objects within a direct line-of-sight of the heat exchanger become warmed immediately.

While capable of being used for total building heating or large area heating, they are ideally suited for spot heating applications. Spot heating involves small areas such as loading dock doors and single person work cells.

Advantages of Infrared Heating

- No air mover, reducing electricity and maintenance costs while increasing worker comfort from the absence of drafts and annoying fan noise.
- Quick temperature recovery, as only objects need to be heated, not large volumes of air.
- Significant energy savings through use of zone control and/or spot heating, which heats objects without the need to heat large air volumes.

Typical Applications

The following are examples of applications that can benefit from high-intensity infrared heating:

- Manufacturing facilities
- Vehicle repair centers
- Warehouses and loading docks
- Aircraft hangars
- Indoor tennis courts
- Indoor golf driving ranges
- Emergency vehicle garages
- Indoor stadium seating areas

The following are examples of applications that can benefit from low-intensity infrared heating:

- Manufacturing facilities
- Vehicle repair centers
- Warehouses and loading docks
- Aircraft hangars
- Tennis courts
- Car washes
- Golf driving ranges
- Covered walkways
- Emergency vehicle garages
- Stadium seating areas
- Vestibules

WARNING

Do not locate ANY gas-fired unit in areas where chlorinated, halogenated or acid vapors are present in the atmosphere.

As Modine Manufacturing Company has a continuous product improvement program, it reserves the right to change design and specifications without notice.
Modine Breeze® AccuSpec Sizing and Selection Program

The Modine Breeze® AccuSpec is the fastest way to generate performance data based on actual job conditions. The Breeze® AccuSpec program is a web-based sizing and selection program. The program provides a series of step-by-step questions that allow for the easy configuration of Modine products. After a model has been configured, the program can generate Submittal Schedules, Submittal Data (including performance and dimensional drawings), and Specifications.

Fast and Simple Unit/Thermostat/Accessory Selection

For access to the Breeze® AccuSpec program, contact your local Modine sales representative.
Features and Benefits - Model IHR

Features

1. High temperature cordierite-based grooved ceramic tiles with perforations along both the top and bottom of the grooves
2. Polished aluminum reflectors
3. 16 gauge aluminized steel frame
4. No air mover is utilized
5. Input ranges from 30,000 Btu/hr through 160,000 Btu/hr in Natural or Propane gas
6. Direct spark or self-energizing standing pilot ignition
7. 115V, 25V, or millivolt controls
8. Externally-mounted controls
9. Burners are replaced by removing one fastener
10. CSA design certification for indoor, unvented operation in commercial and industrial installations

Benefits

1. Increased temperature and surface area to provide maximum heat transfer while maintaining lower gas input ratings.
2. Efficiently direct radiant heat to the desired area, for increased comfort over wider areas.
3. Provides support for simple chain mounting.
4. Eliminates fan noise, drafts, maintenance and reduces electrical energy costs.
5. Wide input range to accommodate a variety of heating requirements
6. Maximize application flexibility.
7. Accommodate a wide range of electrical inputs.
8. Allow convenient access to gas valve, control system, transformer, and gas orifices, increasing ease of installation and service.
9. Eliminates the removal of the unit from its mounted position for service.
10. Assures that the unit conforms to national safety standards.
FEATURES AND BENEFITS - MODEL OHP

Figure 5.1 - Construction Features - Model OHP

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ETL Design Certified to ANSI Z83.26 Standard</td>
<td>1. Assures that the unit conforms to national safety standards.</td>
</tr>
<tr>
<td>3. Wind and rain protected design</td>
<td>3. Input range to accommodate a variety of heating requirements.</td>
</tr>
<tr>
<td>4. 31,000 and 34,000 BTU inputs.</td>
<td>4. Flexible fuel type offering.</td>
</tr>
<tr>
<td>5. No Fan Design.</td>
<td>5. Eliminates fan noise, drafts, maintenance and reduces electrical energy costs.</td>
</tr>
<tr>
<td>6. Externally-mounted controls</td>
<td>6. Allow convenient access to gas valve, control system, transformer, and gas orifices, increasing ease of installation and service.</td>
</tr>
</tbody>
</table>
Features and Benefits - Model IPT

Features
1. Heat-treated darkened aluminized steel tubes
2. Polished aluminum reflectors
3. Removable side-access panels on both sides of the burner box
4. Durable polyester-powder paint
5. Permanently-lubricated combustion blower motor
6. 180 degree-rotating gas valve
7. Sealed burner compartment
8. Flame sensor and ignitor mounted externally to the combustion chamber
9. Flame observation window on underside of combustion chamber
10. Gas valve operation light on back panel on the unit
11. Four-trial separate flame sensor
12. System approval for vented and common vented installation
13. Weatherproof, water-resistant casing
14. ETL design certification

Benefits
1. Heat-treated darkening increases both radiant heat output for more heat near the end of the tube system and eliminates the scratching and flaking that can occur with painted tubes. Aluminized steel provides corrosion resistance for longer life.
2. Direct radiant heat from the tubes to the desired area, for increased comfort over wider areas.
3. Can be removed completely while accessing either side of the unit.
5. Reduces maintenance.
6. Allows convenient access from either side of the burner box.
7. Allows manifold pressure adjustments during unit operation, which increases ease of installation and service.
8. Improve service access.
9. Provides a convenient visual check of unit operation from ground level.
10. Indicates that the combustion blower is operating.
11. Provides reliable ignition.
12. Maximizes installation flexibility.
13. Maximizes application flexibility for both indoor and outdoor installation.
14. Assures that the unit conforms to national safety standards.
Table 7.1 - Performance and Dimensional Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Gas Controls</th>
<th>Input Rating (Btu/hr)</th>
<th>Recommended Mounting Height (ft.)</th>
<th>Dimensions (in)</th>
<th>Ship Wt. (lbs)</th>
<th>Radiating Area (sq. in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Natural Propane</td>
<td>Standard Reflector 30° Angle</td>
<td>Parabolic Reflector 30° Angle</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>IHR 30</td>
<td>Single Stage or Millivolt</td>
<td>30,000</td>
<td>12 - 14</td>
<td>12 - 15</td>
<td>12 3/4</td>
<td>14 1/4</td>
</tr>
<tr>
<td>IHR 60</td>
<td>Single Stage or Millivolt</td>
<td>60,000</td>
<td>14 - 16</td>
<td>18 - 21</td>
<td>19 1/8</td>
<td>15 1/4</td>
</tr>
<tr>
<td>IHR 90</td>
<td>Single Stage or Millivolt</td>
<td>90,000</td>
<td>16 - 18</td>
<td>21 - 25</td>
<td>26 5/8</td>
<td>15 1/4</td>
</tr>
<tr>
<td>IHR 130</td>
<td>Single Stage or Millivolt</td>
<td>130,000</td>
<td>21 - 24</td>
<td>26 - 32</td>
<td>32</td>
<td>15 1/4</td>
</tr>
<tr>
<td>IHR 160</td>
<td>Single Stage or Millivolt</td>
<td>160,000</td>
<td>24 - 28</td>
<td>29 - 35</td>
<td>38 1/2</td>
<td>15 1/4</td>
</tr>
</tbody>
</table>

① See Table 8.1 for allowable mounting angles.
② See Figure 7.1.
③ Single stage controls are direct spark ignition with 100% safety shutoff and are available as either 115V or 24V
④ Millivolt thermostat and 35 feet of wire.

Figure 7.1 - Unit Dimensional Drawing

![Unit Dimensional Drawing](image-url)
Table 8.1 - Allowable Mounting Angle Range

<table>
<thead>
<tr>
<th>Model Size</th>
<th>Allowable Mounting Angle Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 – 160</td>
<td>20° – 35°</td>
</tr>
</tbody>
</table>

Table 8.2 - Clearances to Combustible Materials (See Figure 8.3)

<table>
<thead>
<tr>
<th>Model Sizes</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>130</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side of Heater</td>
<td>30</td>
<td>32</td>
<td>48</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>Back of Heater</td>
<td>18</td>
<td>18</td>
<td>30</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>Top of Heater</td>
<td>28</td>
<td>40</td>
<td>42</td>
<td>52</td>
<td>60</td>
</tr>
<tr>
<td>Below Front</td>
<td>72</td>
<td>72(\dagger)</td>
<td>98</td>
<td>120</td>
<td>132</td>
</tr>
</tbody>
</table>

\(\dagger\) Clearance is 80 in. when heater is fitted with a parabolic reflector.

Figure 8.3 - Clearances to Combustibles (See Table 8.2)
Table 9.1 - Performance and Dimensional Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Housing</th>
<th>BTU/Hr input</th>
<th>Ship Weight</th>
<th>Recommended Mounting Heights</th>
<th>Approx. Area Heated</th>
<th>Control Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHP 31</td>
<td>430 SS</td>
<td>31,000</td>
<td>59 lbs</td>
<td>8.0' to 12.0'</td>
<td>8' x 8'</td>
<td>24 vac</td>
</tr>
<tr>
<td>OHP 34</td>
<td>430 SS</td>
<td>34,000</td>
<td>59 lbs</td>
<td>8.5' to 13.0'</td>
<td>9' x 9'</td>
<td>24 vac</td>
</tr>
</tbody>
</table>

① Clearance is 80 in. when heater is fitted with a parabolic reflector.

Figure 9.1 - Unit Dimensional Drawing

Table 9.2 - Clearances to Combustible Materials

<table>
<thead>
<tr>
<th>Model Sizes</th>
<th>BTU'Hr</th>
<th>Voltage</th>
<th>Mounting Angle</th>
<th>Side</th>
<th>Back</th>
<th>Top</th>
<th>Below</th>
<th>End(s)</th>
<th>Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>31,000 (N,P)</td>
<td>31,000</td>
<td>24 vac</td>
<td>0°</td>
<td>18</td>
<td>N/A</td>
<td>13</td>
<td>48</td>
<td>12</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30°</td>
<td>18</td>
<td>18</td>
<td>40</td>
<td>12</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>34,000 (N)</td>
<td>34,000</td>
<td>24 vac</td>
<td>0°</td>
<td>18</td>
<td>N/A</td>
<td>13</td>
<td>48</td>
<td>12</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30°</td>
<td>18</td>
<td>18</td>
<td>40</td>
<td>12</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

① Heaters mounted on an angle between 1° to 30° must maintain clearances posted for 0° or 30°; whichever is greater.

Figure 9.2 - Clearance to Combustibles
Table 10.1 - Performance

<table>
<thead>
<tr>
<th>Input MBH</th>
<th>50</th>
<th>60</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>175</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certified Tube Lengths (ft.)</td>
<td>20, 30</td>
<td>20, 30, 40</td>
<td>20, 30, 40</td>
<td>30, 40, 50</td>
<td>40, 50, 60</td>
<td>50, 60</td>
<td>50, 60, 70</td>
<td>50, 60, 70</td>
</tr>
<tr>
<td>Recommended Mounting Height (ft.)</td>
<td>10 – 12</td>
<td>10 – 12</td>
<td>12 – 14</td>
<td>12 – 14</td>
<td>15 – 22</td>
<td>15 – 22</td>
<td>18 – 28</td>
<td>20 - 30</td>
</tr>
</tbody>
</table>

1) Recommended Mounting Height and Tube System Applications are meant as a general guide and are adjusted to meet the requirements of the actual application.

2) Spot or Area Heating is an application where occupant comfort is the goal and occupant(s) are either relatively stationary (Spot - Example: small work cell or displaced over a slightly wider range than with Spot Heating (Area - Example: assembly line). Mounting height is typically at the low end of the range shown above.

3) Total Building Heating is an application where average space temperature is to be maintained, however due to the significant temperature gradient differences on long straight tube systems, areas may exist where direct occupant comfort is not achieved.

Recommendations:

- Spot or Area Heating is an application where occupant comfort is the goal and occupant(s) are either relatively stationary.
- Total Building Heating is an application where average space temperature is to be maintained, however due to the significant temperature gradient differences on long straight tube systems, areas may exist where direct occupant comfort is not achieved.

Table 10.2 - Utilities

<table>
<thead>
<tr>
<th>Electrical Rating</th>
<th>Gas Connection (inch)</th>
<th>Minimum Gas Inlet Pressure ("W.C.")</th>
<th>Maximum Gas Inlet Pressure ("W.C.")</th>
<th>Manifold Gas Pressure ("W.C.")</th>
<th>Tube/Vent Diameter (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Hz/1Ph</td>
<td>1/2 NPT</td>
<td>7.0 (natural gas) 11.0 (propane gas)</td>
<td>14.0</td>
<td>3.5 (natural gas-single stage) 2.5 (natural gas-two stage) 10.0 (propane gas-single stage) 6.2 (propane gas-two stage)</td>
<td>4 (O.D.)</td>
</tr>
</tbody>
</table>

Table 10.3 - Combustible Material Clearances

<table>
<thead>
<tr>
<th>Combustible Material Clearances (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPT</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>50/60</td>
</tr>
<tr>
<td>75/100/125</td>
</tr>
<tr>
<td>150/175/200</td>
</tr>
</tbody>
</table>

1) Clearance to each end and above the U-Tube is 12 inches.

2) In unvented applications, clearance from radiant tube end is 36" in all directions.

3) Refer to Figures 8.1 through 8.3.

Figure 10.1 - Combustible Material Clearances - Straight Tube

Figure 10.2 - Stacking Height

Figure 8.3 - Combustible Material Clearances - U-Tube
Figure 11.1 - Casing Dimensions

Figure 11.2 - Burner and Tube System Dimensions

Center-to-center of tubes = 16 inches.

Table 11.1 - Tube Systems Data

<table>
<thead>
<tr>
<th>Tube Length (ft.)</th>
<th>Straight Tube</th>
<th>U-Tube System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System Length “A” (ft.)</td>
<td>System Weight (lb.)</td>
</tr>
<tr>
<td>20</td>
<td>23</td>
<td>78</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>112</td>
</tr>
<tr>
<td>40</td>
<td>43</td>
<td>146</td>
</tr>
<tr>
<td>50</td>
<td>53</td>
<td>180</td>
</tr>
<tr>
<td>60</td>
<td>63</td>
<td>214</td>
</tr>
<tr>
<td>70</td>
<td>73</td>
<td>252</td>
</tr>
</tbody>
</table>

Table 11.2 - Burner Shipping Weights

<table>
<thead>
<tr>
<th>Model</th>
<th>Shipping Wt. (lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Burners</td>
<td>43</td>
</tr>
</tbody>
</table>
General
The heater reflector housing shall be constructed of one-side bright polished aluminum. The emitter shall be composed of a perforated ceramic tile on which combustion takes place on the surface. The burner plenum shall be constructed of aluminized steel of one-piece drawn construction. The heater shall be of a modular design employing multiple burners to achieve the specified input.

• The venturi is constructed of stainless or aluminized steel.
• The secondary re-radiating rods shall be constructed of high temperature stainless steel alloy placed in close proximity of the ceramic burner face.
• Parabolic reflectors shall be used when units are installed in high mounting applications or when focusing of the infrared heating pattern is desirable.
• Protective screens shall be used in facilities where debris may damage the heater.

Burner
The ceramic burner face shall operate at a temperature range of 1660 degrees F to 1810 degrees F and shall incorporate a secondary re-radiating surface of stainless steel rods to obtain optimum operating temperature and radiant output.

Reflectors
The heater reflector housing shall be constructed of one-side bright polished aluminum. The emitter shall be composed of a perforated ceramic tile on which combustion takes place on the surface. The burner plenum shall be constructed of aluminized steel of one-piece drawn construction. The heater shall be of a modular design employing multiple burners to achieve the specified input.

• The venturi is constructed of stainless or aluminized steel.
• The secondary re-radiating rods shall be constructed of high temperature stainless steel alloy placed in close proximity of the ceramic burner face.
• Parabolic reflectors shall be used when units are installed in high mounting applications or when focusing of the infrared heating pattern is desirable.
• Protective screens shall be used in facilities where debris may damage the heater.

Controls
Heater(s) shall be equipped with (check one):

• Heaters shall be equipped with one of the following control systems:

Standing Manual Pilot System with 100% safety shut-off of pilot and main burner in case of pilot outage, operating with no external electrical connection but on milli-voltage generated by the pilot flame (NMV-2 or PMV-2).

Direct Spark Ignition System with direct spark ignition of the main burner through a solid state ignition module operating a spark electrode. Loss of power causes 100% safety shut-off of main burner(s). System operates on 120 or 24 volts (NFS-2 or PFS-2). 24V/60Hz/1ph with 5VA maximum power consumption.

Controls shall be exterior mounted for easy accessibility.

All controls shall be rated for a maximum inlet pressure of 1/2 PSI gas pressure. Controls shall be designed for Natural gas having a specific gravity of 0.60, a Btu content of 1050 Btu/ft³ (Alternate: Propane gas having a specific gravity of 1.53, a Btu content of 2500 Btu/ft³) at 0-2000 feet elevation.

Accessories
The following field installed accessories shall be included (check those that apply):

□ Horizontal parabolic reflector - Directs rays directly downward. Can be used for matching horizontal mounting specifications.

□ Full parabolic reflector - Directs rays in a more focused pattern. Typically used in high mounting applications.

□ Full parabolic reflector with screen - Directs rays in a more focused pattern. Outer screen protects ceramic grids from objects striking the heater.

□ Warning plaque - Hung below heater, restates the clearance to combustible warning.

Figure 12.1 - Model Number Designations

Figure 12.1 - Model Number Designations

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHR 90 G 47</td>
<td>High Intensity Infrared Heater</td>
</tr>
<tr>
<td>MBH Input</td>
<td>30 - 30,000 Btu/hr</td>
</tr>
<tr>
<td>60 - 60,000 Btu/hr</td>
<td></td>
</tr>
<tr>
<td>90 - 90,000 Btu/hr</td>
<td></td>
</tr>
<tr>
<td>130 - 130,000 Btu/hr</td>
<td></td>
</tr>
<tr>
<td>160 - 160,000 Btu/hr</td>
<td></td>
</tr>
<tr>
<td>Control Code</td>
<td></td>
</tr>
<tr>
<td>Direct Spark Ignition</td>
<td></td>
</tr>
<tr>
<td>47 = Natural, 115V, Direct Spark, 1-Stage</td>
<td></td>
</tr>
<tr>
<td>48 = Natural, 24V, Direct Spark, 1-Stage</td>
<td></td>
</tr>
<tr>
<td>97 = Propane, 115V, Direct Spark, 1-Stage</td>
<td></td>
</tr>
<tr>
<td>98 = Propane, 24V, Direct Spark, 1-Stage</td>
<td></td>
</tr>
<tr>
<td>27 = Natural, Millivolt, 1-Stage</td>
<td></td>
</tr>
<tr>
<td>67 = Propane, Millivolt, 1-Stage</td>
<td></td>
</tr>
<tr>
<td>S - Spark Ignition System</td>
<td></td>
</tr>
<tr>
<td>M - Standing Pilot, Millivolt System</td>
<td></td>
</tr>
</tbody>
</table>
General
Contractor shall furnish and install Modine model low intensity infrared heater(s). The low intensity infrared system shall be straight tube U-tube configuration. Performance shall be as indicated on the equipment schedule in the plans. The infrared heater(s) shall be certified for indoor and outdoor installations. Infrared heater(s) shall have ETL design certification for use in both the US and Canada.

Casing
The controls, combustion air blower and burner shall be housed in a water-resistant casing, providing weatherproof protection. The burner and control box casing shall be constructed of not less than 20 gauge aluminized steel. After forming, the casing parts shall be cleaned of all oils and a phosphate coating applied prior to painting. The phosphated parts shall then be finished with an electrostatically applied, gray-green polyester powder paint finish. The applied polyester powder paint shall be baked on to provide an attractive finish on all of the exposed casing parts.

Heat Exchanger
The heat exchanger tubes and combustion chamber shall be constructed of 16 gauge, 4" O. D. aluminized steel, and the first combustion tube for gas inputs 150,000 Btuh and greater shall be 16 gauge 4" O. D. 409 Aluminized Stainless Steel. The last heat exchanger tube shall incorporate a turbulator baffle for maximum efficiency of heat transfer.

The heat exchanger tubes must be used in conjunction with reflectors. The reflector can be adjusted from 0° to 45° from the horizontal plane. Reflectors shall be of bright polished aluminum.

Controls
Input power to the infrared heater(s) shall be 115V/60Hz/1ph. Heater(s) shall be equipped with a direct four-trial (three re-trial), 100% shut-off eletronic ignition control system with a separate flame sensor. Infrared heater(s) shall be equipped with a 115V/25V control transformer. Thermostat shall operate on 25V. Heater(s) will be equipped with a pre-purge mode, a differential pressure switch, and an indicator light to prove proper operation of the gas valve. All controls shall be rated for a maximum inlet pressure of 1/2 PSI gas pressure.

Controls shall be designed for natural_____., propane_____ gas having a specific gravity of _______, a Btu content of _______ Btu/ft³ at _______ feet elevation.

Motor
Each heater shall have a single motor. The combustion air blower motor shall be totally enclosed in the control box and the motor shall be protected by a thermal overload switch. The motor shall be .03 H.P., 115 volt, 60 Hz, single phase, with an operating speed of 3000 rpm.
Products from Modine are designed to provide indoor air-comfort and ventilation solutions for residential, commercial, institutional and industrial applications. Whatever your heating, ventilating and air conditioning requirements, Modine has the product to satisfy your needs, including:

HVAC
- Unit Heaters:
 - Gas
 - Hydronic
 - Electric
 - Oil
- Ceiling Cassettes
- Duct Furnaces
- Hydronic Cabinet Unit Heaters, Fin Tube, Conectors
- Infrared Heaters
- Make-up Air Systems
- Unit Ventilators

Ventilation
- Packaged Rooftop Ventilation

School Products
- Vertical Packaged Classroom HVAC:
 - DX Cooling/Heat Pump
 - Water/Ground Source Heat Pump
 - Horizontal/Vertical Unit Ventilators

Specific catalogs are available for each product. Catalogs 75-136 and 75-137 provide details on all Modine HVAC equipment.